

Level 28, 88 Phillip St Sydney NSW 2000 P: +61 2 8316 3997 F: +61 2 8316 3999 Info@silvermines.com.au www.silvermines.com.au

29 September 2023

Company Announcement Officer ASX Limited Exchange Centre 20 Bridge Street SYDNEY NSW 2000

Regional Exploration and Drilling at Bowdens Silver Project

EXPLORATION HIGHLIGHTS

- Major regional 2D seismic survey has been completed with 96 kilometres of data collected covering the Bowdens Silver and Barabolar Projects, as well as regional prospects. Interpretation is expected November 2023.
- The seismic survey is to provide targets within highly prospective Rylstone Volcanics for epithermal silver-gold-base metal mineralisation, as well as copper-gold porphyry targets at Barabolar.
- Drilling at Barabolar confirms preserved footprint of large hydrothermal system with copper fertile volcanic suites and extensive pyrite alteration.
- Regional geological mapping and soil sampling program is advanced.

BOWDENS DRILLING RESULTS

Silver Mines Limited

- Significant extensions to the Bowdens Silver Deposit with mineralisation continuing to the west, south and north (Aegean Zone). Results include:
 - o BD23014: 2 metres @ 565 g/t silver equivalent from 155 metres,
 - o BD23010: 8.3 metres @ 142 g/t silver equivalent from 559.7 metres,
 - o BD23013: 162 metres @ 44 g/t silver equivalent from 468 metres, and
 - o BD23021: 7 metres @ 89 g/t silver equivalent from 354 metres.
- Exploration drilling continues with two diamond rigs currently on site.

Introduction

Silver Mines Limited (ASX:SVL) ("Silver Mines" or "the Company") is pleased to announce an update on exploration activities within and surrounding the Bowdens Silver Project, as well as an update on a technical review of results for drilling activities completed at the Barabolar Project. Both Projects are located near Mudgee in New South Wales and are part of the 2115km² of exploration licences held by the Company in the region.

Regional Seismic Surveying

The Company has completed a significant geophysical survey of 2D seismic reflection data totalling nearly 96 kilometres. The survey was undertaken across the region including the Barabolar and Bowdens Silver Projects and regional Bara Creek and Coomber Prospects (Figure 1). The survey follows on from the successful application of seismic surveying in 2022 across the Bowdens Silver Deposit. Seismic surveying has recently become a cost-effective exploration tool for mineral exploration.

The survey covered numerous areas prospective for both Bowdens Silver Deposit epithermal type systems, and for copper, gold and molybdenum bearing porphyry systems.

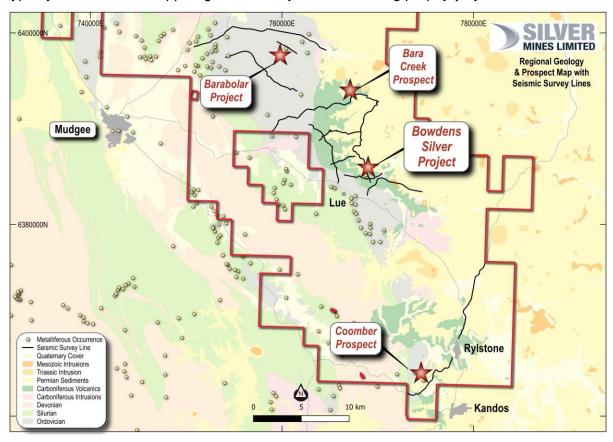


Figure 1: Location of completed regional seismic survey.

The data is now being processed with the anticipated depth of investigation to extend a minimum 1.5 kilometres below surface. The survey is designed to highlight seismic velocity contrasts within the earth due to changes in rock type or discontinuities from faults. This will provide further definition of the Bowdens Caldera structure surrounding, and host to, the Bowdens Silver Project by highlighting the thickness of the Rylstone Volcanics and identify any major structures. The major structures could represent conduits for metal bearing fluids to both transport and deposit mineralisation. Additionally, buried intrusions that are more likely

to have been the source of metal bearing fluids may be highlighted compared to the surrounding rock. This will be particularly of interest at the Barabolar Project (Figure 2). The 2022 seismic survey covering the Bowdens Silver Deposit provides confidence that the exploration technique is well suited to the geology and the results are expected to provide robust exploration targets for follow up.

During the December 2022 quarter, Bowdens Silver was awarded exploration funding of \$150,000 for exploration at the Bowdens Silver Project, under the New South Wales Government New Frontiers Exploration Program. The New Frontiers Exploration Program funding is part of the NSW Government's Critical Minerals and High-Tech Metals Strategy to promote mineral exploration investment in New Soth Wales.

A total of \$50,000 was awarded for the seismic survey to be completed throughout the Bowdens Caldera structure, which extends some 7 kilometres to the north of the Bowdens Silver Deposit and encompasses the Bara Creek Prospect. The seismic survey is a major component of the Bowdens Silver research & development programs and initiative in understanding the history, evolution and structure of the highly prospective Rylstone Volcanics.

Figure 2: Seismic survey at the Barabolar Project with the pyrophyllite quarry in the background.

Barabolar Project

The results of recent drilling at the Barabolar Project (Figure 3) have been interpreted considering petrology studies and return of downhole assays. The drilling program targeted coincident anomalies from soil sampling, gravity, and induced polarisation surveys (IP) to a depth of some 560 metres below surface, as well as the significant occurrence of pyrophyllite alteration exposed at surface. The existence of pyrophyllite suggests that there is preservation of a large hydrothermal system and potential porphyry system.

Petrology has confirmed the prospectivity of the host lithology which includes andesitic, dacitic and rhyolitic tuffs. These are enriched in copper relative to background, where 300 ppm copper was intersected over 128 metres in BAR22007. While not yet an economic discovery, the copper enrichment along with significant amounts of pyrite and elevated bismuth provide indications that a metal bearing hydrothermal system is preserved. Pyrite for instance is shown to be pervasive by intersections such as 390 metres of ~3% sulphur assays in BAR22007 from 101 metres.

Figure 4 below shows a conceptual model of the likely position of the drilling at Barabolar relative to a buried porphyry system. Mineralisation intercepted within the Project is consistent with the peripheral setting of the porphyry environment with individual peak assays of copper of 0.24%, gold of 0.81g/t, lead of 1.41%, silver of 22g/t, and zinc of 2.22%. These anomalous metals are synchronous with intensely altered volcanics by pyrite—chlorite and illite—muscovite—carbonate and a later pyrophyllite overprint.

The Barabolar Project is a quality exploration project located within the highly prospective Macquarie Arc that also hosts world class mineral systems such as the Cadia-Ridgeway porphyry copper-gold deposit. Barabolar consists of an extensive corridor of gold, copper, silver, zinc and lead soil and rock chip anomalies.

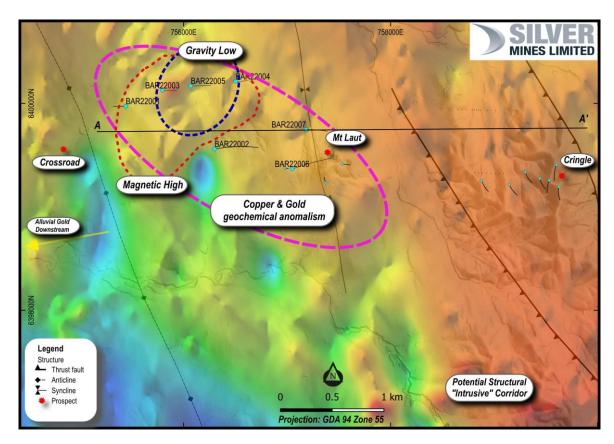


Figure 3: Drill locations at the Barabolar Project from 2022.

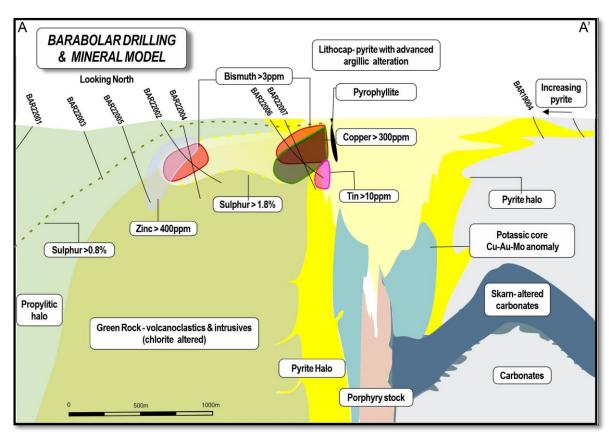


Figure 4: Schematic model from drilling at Barabolar (geology outside drilling results is conceptual in nature).

Bowdens Silver Project

Two diamond drill rigs have continued drilling at the Bowdens Silver Project, focusing on potential extensions to the Bowdens Silver Mineral Resource Estimate (Figure 5) and particularly on high-grade sections of the Mineral Resource (Aegean and Southern Gold Zones). Drilling has also tested responses defined from the 2022 seismic survey (Figure 6). Many structures highlighted by the seismic survey, were shown to be untested within the Bowdens Silver Deposit and which could contain possible extensions to mineralisation. Other structures tested include significant faults related to the broader Bowdens Caldera, such as depth extensions to the Northern Fault.

Drillholes BD23007, BD23009, BD23012 and BD23014 were drilled at the Southern Gold Zone and returned some high-grade results. BD23014 intercepted:

- 1 metre @ 353g/t silver equivalent (234g/t silver, 1.16g/t gold, 0.41% zinc and 0.12% lead) from 100 metres and,
- 2 metres @ 565g/t silver equivalent (472g/t silver, 0.53g/t gold, 0.64% zinc and 0.48% lead) from 155 metres.

These intercepts occur nearly 100 metres below, and almost 200 metres south of, the current Mineral Resource Estimate model. Other significant intercepts within this zone include BD23012 with **4.6 metres** @ **291g/t silver equivalent** (52g/t silver, 0.44g/t gold, 2.20% zinc and 2.74% lead) from 205 metres, and BD23007 with 1 metre @ **134g/t silver equivalent** (116g/t silver, 0.19% zinc and 0.07% lead) from 350 metres.

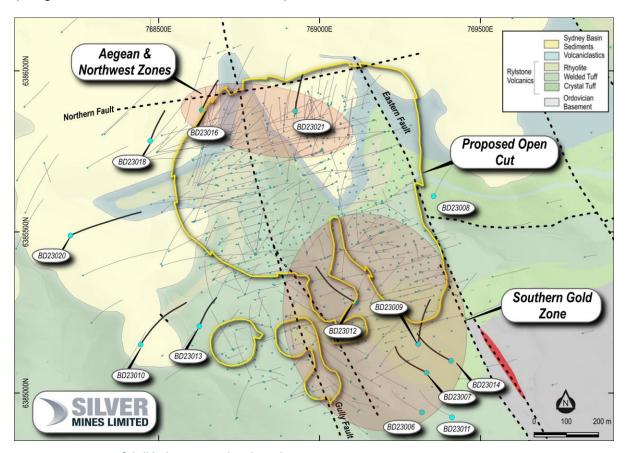


Figure 5: Location of drill holes reported in this release.

Drillholes BD23010 and BD23020 were drilled to test for continuations of the Bundarra Zone mineralisation to the west and southwest of the Bowdens Silver Deposit at depth. BD23010 was drilled ~200 metres south of BD20001¹, while BD23020 was drilled ~130 metres to the north of BD20001. Both holes successfully intercepted continuations to the mineralised system, with 38 metres @ 106g/t silver equivalent from 630 metres in BD23020 while 62 metres @ 57g/t silver equivalent from 628 metres was intercepted in BD23010. Mineralisation continues at a depth of 650 metres below ground level, now define the Bundarra Zone to have a strike extent of 325 metres, while being continuous up dip into the Bowdens Silver Deposit.

BD23013 was drilled to test down-dip of the dacite intrusion, which is associated with mineralisation in the Bundarra Zone. The hole also tested for continuation of shallow mineralisation around the southern planned open-cut. BD23013 intercepted:

- 33 metres @ 34g/t silver equivalent (8g/t silver, 0.40% zinc and 0.20% lead) from 48 metres and.
- 162 metres @ 44g/t silver equivalent (5g/t silver, 0.67% zinc and 0.08% lead) from 468 metres.

Drillhole BD23021 was drilled to test for extensions to the Aegean Zone, beyond mineralisation in BD22055² (6 metres @ 1,251g/t silver with 0.18% lead). Mineralisation was extended 50 metres to the northwest with an intercept of 7 metres @ 89g/t silver equivalent including 1 metre @ 346g/t silver equivalent.

Other drilling completed as part of the broader exploration includes testing of various responses identified from the 2022 seismic survey across the Bowdens Silver Deposit³. This program was awarded funding of \$100,000 from the NSW Government New Frontiers Exploration Program. This drilling forms a major component of the Bowdens Silver Research and Development work and initiative in understanding the history, evolution and structure of the highly prospective Rylstone Volcanics.

These holes are shown in Figure 6 and included caldera "ring" fault targets and shallow reflectors to the south of the Bowdens Silver Deposit. Holes BD23002 and BD23005 confirmed the presence of thicker Rylstone Volcanics north of the ring fault, although both holes failed to intersect any mineralisation. BD23003 drilled to the south of the Bowdens Silver Deposit intersected a dacite intrusion and pebble dyke with an association of anomalous gold to 0.32g/t. The geology associated with the seismic responses is believed to be highly encouraging and shows that the Bowdens Silver system continues to be fertile at nearly 700 metres away from the mineralising system. Strong reflectors seen to the east of the Bowdens Silver Deposit are yet to be tested.

Silver Mines Limited

¹ Silver Mines Limited (ASX:SVL) release "Bowdens Silver Exploration Drilling Update" dated 8 April 2020.

² Silver Mines Limited (ASX:SVL) release "Bonanza Grade Silver from the Aegean Zone at Bowdens Silver Project" dated 15 May 2023.

³ Silver Mines Limited (ASX:SVL) release "Seismic Survey Highlights Significant New Drill Targets" dated 15 August 2022.

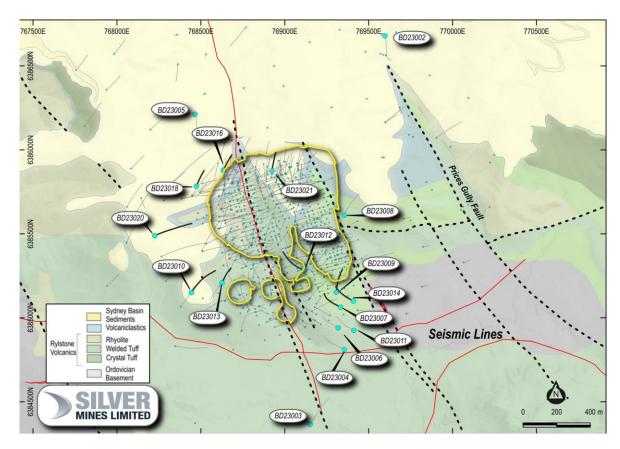


Figure 6: Location of drill holes and completed seismic survey lines reported in this release.

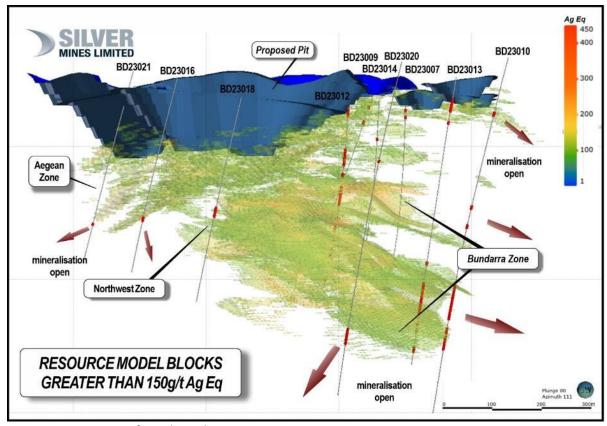


Figure 7: Long section of Bowdens Silver Deposit

Regional Exploration

Two diamond drill rigs are onsite continuing with 15,000 metres of exploration drilling in and around the Bowdens Silver Deposit. Targets being tested continue to be areas of potential extensions to mineralisation and targets generated from the seismic survey in 2022.

Other regional exploration has commenced with soil sampling, geological mapping and rock sampling being completed as reconnaissance. Follow up geophysical surveys such as gravity and induced polarisation will be completed across targeted areas of anomalism from reconnaissance work.

About the Bowdens Silver Project

The Bowdens Silver Project is located in central New South Wales, approximately 26 kilometres east of Mudgee (Figure 8). The consolidated project area comprises 2,115 km² (521,000 acres) of titles covering approximately 80 kilometres of strike of the highly mineralised Rylstone Volcanics. Multiple target styles and mineral occurrences have potential throughout the district including analogues to Bowdens Silver, high-grade silver-lead-zinc epithermal and volcanogenic massive sulphide (VMS) systems and copper-gold targets.

Bowdens Silver is the largest undeveloped silver deposit in Australia with substantial resources and a considerable body of high-quality technical work already completed. The projects boast outstanding logistics for future mine development.

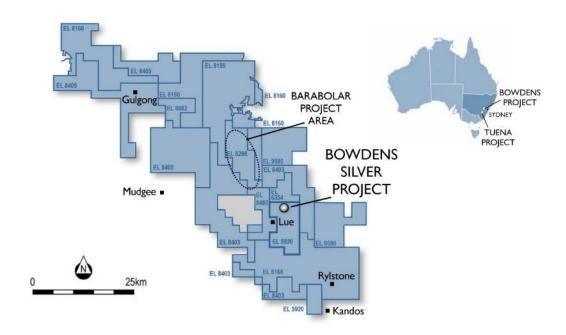


Figure 8. Silver Mines Limited tenement holdings in the Mudgee district.

This document has been authorised for release to the ASX by the Company's Managing Director, Mr Anthony McClure.

Further information:

Anthony McClure Managing Director Silver Mines Limited +61 2 8316 3997 Christina Granger Account Director M+C Partners +61 438 117 286

Competent Persons Statement

The information in this report that relates to mineral exploration from the Bowdens Silver Project is based on information compiled by the Bowdens Silver team and reviewed by Darren Holden who is an advisor to the Company. Dr Holden is a Fellow of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC code). Dr Holden consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Table 1. Drill collar locations for new diamond drilling results.

Target	Hole ID	GDA94 East	GDA94 North	RL (m)	Dip	Azimuth (grid)	Depth (m)	Drill Type	Comment
Seismic	BD23002	769598	6386679	616	-75	170	850	Diamond	No significant results
Seismic	BD23003	769151	6384366	584	-60	36	376	Diamond	No significant results
Southern Gold	BD23004	769355	6384810	590	-65	300	412	Diamond	No significant results
Seismic	BD23005	768466	6386213	643	-80	170	618	Diamond	No significant results
Southern Gold	BD23006	769319	6384940	600	-70	300	403	Diamond	No significant results
Southern Gold	BD23007	769333	6385063	599	-70	300	439	Diamond	Assays returned
Seismic	BD23008	769355	6385611	626	-75	25	500	Diamond	No significant results
Southern Gold	BD23009	769307	6385152	603	-70	10	412	Diamond	Assays returned
Bundarra	BD23010	768444	6385150	681	-75	30	832	Diamond	Assays returned
Southern Gold	BD23011	769412	6384925	589	-70	300	400	Diamond	No significant results
Southern Gold	BD23012	769114	6385281	645	-70	300	511	Diamond	Assays returned
Bundarra	BD23013	768627	6385208	637	-80	25	658	Diamond	Assays returned
Southern Gold	BD23014	769409	6385100	592	-70	300	409	Diamond	Assays returned
Southern Gold	BD23015	769388	6385009	592	-70	300	421	Diamond	No significant results
Northwest	BD23016	768634	6385878	635	-76	25	451	Diamond	Assays returned
Southern Gold	BD23017	769503	6385133	592	-70	300	405	Diamond	No significant results
Northwest	BD23018	768474	6385783	592	-76	22	475	Diamond	Assays returned
Seismic	BD23019	769262	6386007	592	-80	10	534	Diamond	No significant results
Bundarra	BD23020	768226	6385489	669	-70	65	786	Diamond	Assays returned
Aegean	BD23021	768925	6385875	651	-74	10	448	Diamond	Assays returned
Barabolar	BAR22001	755440	6399973	594	-55	270	208	Diamond	No significant results
Barabolar	BAR22002	756298	6399558	594	-55	80	598	Diamond	Assays returned
Barabolar	BAR22003	755794	6400126	569	-70	90	373	Diamond	No significant results
Barabolar	BAR22004	756502	6400212	595	-80	90	517	Diamond	No significant results
Barabolar	BAR22005	756068	6400168	590	-70	90	560	Diamond	Assays returned
Barabolar	BAR22006	757048	6399366	620	-55	73	570	Diamond	No significant results
Barabolar	BAR22007	757182	6399747	620	-70	90	515	Diamond	No significant results

Table 2. Summary of all recent diamond drilling intercepts.

Hole	From	То	Interval	Silver	Zinc	Lead	Gold	Copper	Silver Eq
Tiole	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(%)	(g/t)
BD23007	33	55.4	22.4	21	0.10	0.05	0.17	-	42 ¹
Including	49	50	1	58	0.08	0.06	0.37	-	93
	350	351	1	116	0.19	0.07	0.05	0.02	134
BD23009	15	38	23	24	0.10	0.04	0.03	-	33¹
	49	75	26	12	0.13	0.08	0.09	0.01	29 ¹
Including	74	75	1	60	1.25	0.66	1.02	0.02	227 ²
	118	139	21	14	0.10	0.07	0.10	0.01	31 ¹
Including	131	132	1	45	0.28	0.17	1.14	0.02	158²
moraumg	164	171	7	6	0.13	0.08	0.04	0.01	19 ¹
	222	223	1	22	0.84	0.61	0.18	0.01	100²
BD23010	32	33	1	4	2.23	0.15	-	-	119 ²
	127	138	11	1	0.71	0.22	-	-	43 ¹
Including	134	135	1	3	3.31	0.88	-	-	196²
	345	361	16	6	0.27	0.16	0.07	0.01	32 ¹
Including	351	352	1	30	1.99	1.14	0.62	0.02	219 ²
	389	400	11	9	0.34	0.20	0.14	0.02	46¹
Including	393	395	2	25	0.54	0.44	0.54	0.03	114 ²
	422	430	8	6	0.18	0.12	0.01	0.01	21 ¹
	448	465	17	7	0.34	0.22	0.04	0.02	36¹
Including	460	465	5	12	0.71	0.49	0.09	0.02	73²
	529	611	82	4	0.69	0.25	0.01	0.02	49 ¹
Including	539	545	6	15	1.76	0.91	0.03	0.07	143²
& incl.	559.7	568	8.3	12	1.77	1.09	0.01	0.04	142 ²
& incl.	609	611	2	24	6.02	0.05	0.01	0.10	336²
	628	690	62	5	0.93	0.09	0.01	0.02	57 ¹
Including	641	644	3	4	2.07	0.02	0.01	0.02	110 ²
& incl.	654	655	1	17	3.69	0.03	0.02	0.10	213 ²
& incl.	661	672	11	7	1.65	0.24	0.03	0.01	101 ²
& incl.	676	677	1	6	1.68	0.11	0.01	0.02	96²
	729	737	8	2	0.17	0.08	0.06	0.01	18 ¹
BD23012	3	130	127	16	0.25	0.18	0.03	-	36¹
Including	3	4	1	99	0.64	0.45	-	-	146²
& incl.	29.8	31	1.2	219	0.46	0.33	0.04	-	257²
& incl.	36	44	8	42	0.43	0.18	0.01	-	71 ²
& incl.	57	58	1	146	0.83	0.29	0.02	0.01	199²
& incl.	90	91	1	19	1.06	0.57	0.11	0.02	102²

Hole	From	То	Interval	Silver	Zinc	Lead	Gold	Copper	Silver Eq
	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(%)	(g/t)
	174	225	51	12	0.52	0.52	0.18	0.01	72¹
Including	183	185	2	17	0.92	0.94	0.90	0.01	168²
& incl.	189	195	6	15	0.63	0.75	0.21	0.02	91 ²
& incl.	205	209.6	4.6	52	2.20	2.74	0.44	0.03	291 ²
& incl.	214	215	1	19	1.22	0.67	0.25	0.03	125 ²
	237	317	80	8	0.46	0.36	0.05	0.01	48¹
Including	237	238	1	17	1.49	0.88	0.04	0.02	126²
& incl.	250	255	5	12	0.70	0.55	0.08	0.02	73 ²
& incl.	265	268	3	32	1.85	2.06	0.16	0.04	210 ²
& incl.	272	273	1	18	1.22	0.81	0.10	0.04	118²
& incl.	277	284	7	11	0.97	0.63	0.11	0.02	91 ²
& incl.	290	291	1	20	1.61	0.95	0.06	0.02	139 ²
& incl.	303	307	4	13	0.90	0.65	0.23	0.02	100 ²
	341	349	8	8	0.70	0.45	0.05	0.01	63¹
Including	348	349	1	26	2.93	1.52	0.23	0.02	242 ²
	360	437	77	9	0.72	0.51	0.11	0.01	73¹
Including	362.8	371.7	8.9	12	1.28	0.67	0.07	0.02	106²
& incl.	384	385	1	35	2.71	2.08	0.01	0.05	246²
& incl.	389	390	1	33	3.10	2.73	0.68	0.04	337 ²
& incl.	398	399	1	21	2.08	0.98	0.02	0.05	164 ²
& incl.	403.8	407	3.2	27	2.52	1.61	1.91	0.02	361 ²
& incl.	419	426	7	17	1.37	1.16	0.02	0.02	128²
	451	464	13	7	0.56	0.36	0.06	0.01	53¹
Including	452	453	1	30	2.41	1.91	0.02	0.02	217 ²
& incl.	461	464	3	8	1.11	0.52	0.25	0.02	103²
	480	497	17	5	0.36	0.29	0.02	0.01	35¹
BD23013	29	30	1	114	0.04	0.20	-	-	123 ²
	48	81	33	8	0.40	0.20	-	-	34¹
Including	70	72	2	36	0.40	1.42	-	-	103²
	100	109	9	5	0.87	0.33	-	-	59¹
Including	101	102	1	18	1.11	1.04	-	-	108²
& incl.	108	109	1	4	1.60	0.26	-	-	92 ²
	210	217	7	5	0.14	0.07	0.02	0.01	16¹
	308	309	1	37	3.17	1.42	0.43	0.05	282 ²
	321	324	3	9	0.70	0.24	1.73	0.02	192²
	364	395	31	4	0.17	0.13	0.02	0.01	20¹
Including	378	379	1	26	1.56	0.88	0.12	0.05	148²

Hole	From	То	Interval	Silver	Zinc	Lead	Gold	Copper	Silver Eq
	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(%)	(g/t)
	421	431	10	10	0.43	0.26	0.02	0.01	43 ¹
Including	426	431	5	13	0.72	0.39	0.02	0.01	66²
	468	630	162	5	0.67	0.08	0.01	0.01	44 ¹
Including	483	484	1	24	1.77	0.33	-	0.08	132 ²
& incl.	494	497	3	14	2.28	0.24	0.04	0.02	140²
& incl.	501.8	507.8	6	7	2.12	0.07	0.02	0.01	117²
& incl.	523	525	2	37	6.32	0.18	0.03	0.04	364²
& incl.	532	533	1	11	2.98	0.05	0.01	0.03	166²
& incl.	545	547	2	25	5.12	0.25	0.01	0.06	295²
& incl.	569	570	1	7	2.08	0.13	0.01	0.02	116²
& incl.	581	582	1	29	4.06	0.80	0.02	0.06	266²
BD23014	11	16	5	27	0.04	0.01	0.02	-	31¹
	95	101	6	48	0.31	0.11	0.22	0.01	86¹
Including	100	101	1	234	0.41	0.12	1.16	0.02	353 ²
	155	157	2	472	0.64	0.48	0.53	0.02	565 ²
BD23016	323	335	12	33	0.01	0.03	-	-	35 ¹
Including	325	326	1	121	0.00	0.02	-	-	122 ²
BD23018	255	280	25	37	0.13	0.03	-	-	45 ¹
Including	265	266	1	188	0.09	0.02	-	-	193²
& incl.	277	280	3	81	0.21	0.03	-	-	92 ²
	315	317	2	141	0.12	0.12	-	-	151²
BD23020	234	240	6	61	0.16	0.21	-	-	77 ¹
Including	234	239	5	69	0.16	0.19	-	-	84 ²
	251	262	11	5	0.26	0.09	-	-	21 ¹
	471	472	1	153	0.29	0.08	0.05	0.01	175 ²
	511	512	1	364	0.86	0.35	0.49	0.02	460 ²
	528	529	1	44	1.25	1.72	0.23	0.03	185²
	630	668	38	18	0.92	1.01	0.08	0.02	106¹
Including	637	651	14	21	1.43	1.21	0.11	0.02	144 ²
& incl.	659	668	9	32	1.14	2.08	0.14	0.03	172²
BD23021	354	361	7	85	0.01	0.09	-	-	89¹
BAR22002	251.6	260.7	9.1	0.41	0.62	0.01	-	0.02	34 ¹
	257	258	1	0.98	2.22	0.01	0.01	0.05	117¹
BAR22005	77	82	5	3	0.33	0.46	-	0.04	39¹
	81	82	1	5	0.73	1.38	0.01	0.10	100¹

1.Bowdens' reported silver equivalent is consistent with previous reports and current resource modelling based on assumptions, calculated from prices of US\$20/oz silver, US\$1.50/lb zinc, US\$1.00/lb lead, US\$1600/oz gold and metallurgical recoveries of 85% silver + gold, 82% zinc and 83% lead estimated from test work commissioned by Silver Mines Limited. Silver equivalency updated to also include significant gold and copper credit assuming the same recovery as silver, with gold:silver price ratio of 80:1 based on the approximate price ratio: Ag Eq (g/t) = Ag (g/t) + 33.48*Pb (%) + 49.61*Zn (%) + 80*Au(g/t) + 113.08*Cu%.

Intercepts calculated using a 30g/t Ag Eq cut-off and 10 metre internal dilution factor, with highest individual assay results highlighted as included within overall intercept.

2. Intercepts calculated using a 90g/t AgE cut-off and 3 metre internal dilution factor, with highest individual assay results highlighted as included within overall intercept.

Level 28, 88 Phillip St Sydney NSW 2000 P: +61 2 8316 3997 F: +61 2 8316 3999 Info@silvermines.com.au www.silvermines.com.au

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay.') In other cases, more explanation may be required such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Sampling taken continuously downhole from PQ and HQ diameter diamond core. PQ size core – all samples taken as nominal 1 or 2 metre intervals, or as otherwise defined by logged geology intervals, from quarter cut core. HQ size core – all samples taken as nominal 1 metre intervals where mineralisation observed from half cut core, or as otherwise defined by logged geology intervals and from the same side of the core where downhole orientations permit. Samples vary in weight but are generally between 2 and 4 kilograms of material. Each sample was sent for multi-element assay using ICP technique (ME-ICP61) with the entire sample pulverized and homogenized with a 25g extract taken for assay. Barabolar drilling samples were sent for multi-element assay using ICP-AES technique (ME-MS61) with the entire sample pulverized and homogenized with a 25g extract taken for assay. Select samples were also sent for gold using fire assay technique (Au-AA23) with a 30g sample taken for assay. Assays are considered representative of the sample collected.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling undertaken using PQ and HQ diamond core with triple tube used. All core, excluding PQ size, where unbroken ground allows, is oriented by drilling team and an orientation line drawn along the base of the hole.

Silver Mines Limited

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery is estimated at greater than 98%. Some zones, (less than 5%) were broken core with occasional clay zones where sample loss may have occurred. However, this is not considered to have materially affected the results. No significant relationship between sample recovery and grade exists.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All diamond core is logged using lithology, alteration, veining, mineralisation and structure, including geotechnical structure. All core is photographed using both a wet and dry image. In all cases the entire hole is logged by a geologist.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core were taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance, results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Selective sub-sampling based on geology to a maximum size of 2 metres and a minimum of 0.3 metres. All core is cut using a Corewise core saw with core rotated 10 degrees to the orientation line to preserve the orientation for future reference. For HQ core the half of the core without the orientation line is removed, bagged and sent to the laboratory for assay. Sample sizes are considered appropriate for the rock type, style of mineralisation, the thickness and consistency of the intersections and assay ranges expected at Bowdens.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, 	 Previously listed assay methods are considered appropriate for the style of mineralisation under investigation at the Bowdens Silver Project and the Barabolar Project. Site standards and blanks are inserted at a rate of 8 per 100 samples, and duplicates are inserted at a rate of 5 per 100 samples to check quality control. Laboratory standards and blanks are inserted every 25 samples.

Criteria	JORC Code explanation	Commentary
	blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections calculated by Bowdens Silver geologists. All geological logging is entered digitally before inputting into a Maxwell Geoservices database schema. Primary assay data is sent electronically from the laboratory to the SVL database administrator and then entered into the geological database for validation. All assays matched with the logging sheets and loaded directly from the output provided by the laboratory with no manual entry of assays undertaken. No adjustments were made or required to be made to the assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The collar position is initially surveyed using hand-held GPS with accuracy of +- 3 metres. Down hole surveys collected every 30 metres using an electronic downhole reflex survey camera. The terrain includes steep hills and ridges with a digital elevation model derived from a combination of locally flown LIDAR and publicly available point cloud data. All collars recorded in MGA94 zone 55.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The drilling results relate to exploration and resource drilling at the Bowdens Silver Deposit. Drilling is not defined to a set spacing.
Orientation of data in relation to geological structure	<u> </u>	 Drill orientation was designed to intersect the projection of the major structural controls to the Deposit. An interpretation of the mineralisation has indicated that no sampling bias has been introduced.

Silver Mines Limited

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 All samples bagged on site under the supervision the senior geologist with sample bags tied with cable ties before being driven by site personnel to the laboratory in Orange, NSW (~200 kilometres from the site).
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 The drilling campaign and drill work includes on-going internal auditing with advice taken on process from external advisors.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Bowdens Silver Resource is located wholly within Exploration Licence No 5920, held wholly by Silver Mines Limited and is located approximately 26 kilometres east of Mudgee, New South Wales. The tenement is in good standing. The project has a 2.0% Net Smelter Royalty which reduces to 1.0% after the payment of US\$5 million over 100% of EL5920. The project has a 0.85% Gross Royalty over 100% of EL5920.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Bowdens project was previously managed by Kingsgate Consolidated and Silver Standard Ltd, however the new results under this table are based on work conducted solely by Silver Mines Limited/Bowdens Silver Pty Limited.
Geology	Deposit type, geological setting and style of mineralisation.	 The Bowdens Deposit is a low to intermediate sulphidation epithermal base-metal and silver system hosted in Carboniferous aged Volcanic rocks and Ordovician aged sediments and volcanics. Mineralisation includes veins, breccias and fracture fill veins within tuff and ignimbrite rocks, and semi massive veins, breccias and fracture fill in siltstone, shale and sandstone. Mineralisation is overall shallowly dipping (~15 degrees to the north) with high-grade zones preferentially following a volcanic intrusion and

Criteria	JORC Code explanation	Commentary
		 major fault fracture zones. There are several vein orientations within the broader mineralised zones including some areas of stock-work veins. The mineralisation reported in this release is hosted in the Rylstone Volcanics and the Coomber Formation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; and hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All information is included in Table 1 and Table 2 of this report above.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intersection calculation are weighted to sample length. The average sample represents 1 metre of drill core. Reported intersections are based on a cut off of 30g/t silver equivalency including gold and copper with a 10 metres internal dilution factor, or a cut off of 90g/t silver equivalency including gold and copper with a 3 metres internal dilution factor. No top cutting of data or grades was undertaken in the reporting of these results.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Mineralisation is both stratabound and vein hosted. The stratigraphy dips moderately to the north within the volcanics and moderately to the west in the basement units, while the majority of mineralised veins dip west. Some individual veins intersected were sub-parallel (~10 to 20 degrees to core axes). However, given the stratigraphic controls on the zones, the drilling width is estimated to be 100 to 140% of truewidth for stratabound mineralized zone.

Silver Mines Limited

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views. 	Maps and cross sections provided in the body of this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results received and compiled to date are reported in this release. Drilling is on-going with further results expected.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics and potential deleterious or contaminating substances.	This report relates to drill data reported from this program.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 This report relates to a drill program that is designed to test the extension and explore for further zones of high-grade silver situated around and beneath the Bowdens Silver Deposit. Drilling is on-going with further results pending.